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Abstract

Do loss-averse investors influence asset prices in the long run? In an economy

with heterogeneous investors those who are loss-averse can influence long run asset

prices only if they survive, and its not obvious that they can survive in the presence

of investors who do not exhibit loss aversion. This paper addresses these issues in a

dynamic asset market model in which arbitrageurs have Epstein-Zin preferences. Our

analysis shows that if loss aversion is the only difference in investors’ preferences, then

for empirically relevant parameter values, loss averse investors will be driven out of the

market and thus they do not affect prices in the long run. The selection process may

be slow in terms of wealth shares; but it can be effective in terms of price impacts,

because of endogenous withdrawal by loss averse investors from the stock market. We

also show that if investors have differing elasticities of intertemporal substitution or

time patience parameters, loss averse investors can survive and affect prices in the long

run.
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1 Introduction

The behavior of individuals in experiments is sometimes inconsistent with those individuals

being well described as expected utility maximizers with correct expectations. Similarly,

aggregate outcomes in asset markets are sometimes inconsistent with the predictions de-

rived from (correct) expected utility maximizers interacting in a well functioning market.

These observations have motivated the study of various alternative decision theories. One

particularly interesting alternative theory studied in the recent behavioral finance literature

is loss aversion which is a salient feature of prospect theory. Researchers have found that

loss aversion helps to explain many financial phenomena, including the high mean, excess

volatility and predictability of stock returns (e.g., Barberis, Huang and Santos, 2001); the

value effect (Barberis and Huang, 2001); and, the GARCH effect in stock returns (McQueen

and Vorkink, 2004).

Studies of the impact of loss aversion on markets are typically conducted in representa-

tive agent frameworks in which there is only one investor or equivalently all investors are

identical.1 This research has produced valuable insights into the potential for loss aversion

to explain asset market puzzles, but it has a serious limitation. In particular, there is no

trade, as there is no one to trade with in the economies studied in this literature. Its not

just the absence of trade that is troubling, rather its whether the trade that would occur

between heterogeneous individuals would dampen or even eliminate the impact of loss-averse

traders on market outcomes. Recent research on market selection in economies composed of

expected utility maximizers with heterogeneous beliefs (Sandroni, 2000; Blume and Easley,

2006) shows that selection forces are important and cannot be ignored. This literature shows

that under reasonable conditions, traders with incorrect beliefs are driven out of the market

by those with correct beliefs, and as a result asset prices are eventually correct. That is,

aggregate outcomes converge to those that would be predicted by well functioning markets

composed only of expected utility maximizers with correct expectations. If investors who are

not loss-averse and who have correct beliefs also drive loss-averse investors out of the market,

and do so quickly, then loss-averse investors do not affect long run prices. This concern led

1E.g., Benartzi and Thaler (1995). Barberis and Huang (2001, 2007, 2009), Barberis, Huang and Santos

(2001), McQueen and Vorkink (2004), Grünea and Semmler (2008).
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Barberis and Huang (2009, p 1567) to caution that one should interpret the equity premium

obtained in their representative agent model as “an upper bound on the equity premium

that we would obtain in a more realistic heterogeneous agent economy.”

In this paper we answer the question of whether loss-averse investors can survive and

influence long run prices. We analyze a heterogeneous agent economy with two (classes of)

investors and two tradable assets–a risk-free bond and a risky stock. Both investors have

recursive preferences. The first investor, labeled the EZ-investor, has Epstein-Zin preferences

(Epstein and Zin, 1989) and she represents “rational investors” or “arbitrageurs”. We use

Epstein-Zin preferences in order to make this rational investor directly comparable with our

second, loss-averse investor. The second investor is called the LA-investor, and he has a

recursive preference representation proposed by Barberis and Huang (2007, 2009).2 The LA-

investor departs from the EZ-investor in the way he evaluates his investment in the stock

market: he derives utility from investing in the market both indirectly, via its contribution

to his lifetime consumption, and directly, via its resulting fluctuations in his financial wealth,

and he is more sensitive to losses than to gains (loss aversion).

We have two main results. First, if investors only differ in whether they are loss-averse

or not, the LA-investor will be driven out of the market and will have no impact on asset

prices in the long run for economies with empirically relevant parameter values (see Section

4). The selection process is slow in terms of wealth shares. For example, in calibrated

economies, after 50 years, the LA-investor, on average, retains more than 70% of his initial

wealth share. However, the selection mechanism is effective in terms of price impacts, as the

LA-investor optimally chooses not to purchase the risky asset, leaving the equity premium

to be determined by the EZ-investor.

Second, loss aversion, the elasticity of intertemporal substitution parameter (EIS hence-

forth) and the time-patience parameter all matter for survival. In particular, a LA-investor

with a larger EIS parameter or time-patience parameter can survive in the presence of an

EZ-investor (see Section 5). We find that small differences in these parameters determining

intertemporal behavior can easily offset the negative effects of loss aversion. For instance,

in a calibrated economy, a difference in the (annualized) time-patience parameter of two

2Throughout this paper, we will use “she”/“her” to refer to the EZ-investor and use “he”/“him” to refer

to the LA-investor.
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percent can result in the long run dominance of the LA-investor. This second set of results

quantifies the effect of the difference in investors’ preferences on survival and asset prices.

The first result – that if loss aversion is the only difference in investors’ preferences,

the LA-investor vanishes – is driven primarily by the endogenous difference in investors’

equilibrium portfolio choices. Previous studies on market selection among expected utility

maximizers show that when the saving rate is fixed, the closer an investor’s utility is to log

utility, the higher is his/her expected wealth growth rate (De Long, Shleifer, Summers, and

Waldman, 1991; Blume and Easley, 1992). Our analysis shows that this insight holds for

recursive preferences in a general equilibrium setting. Under empirically plausible parameter

values, the EZ-investor is more risk averse than the log utility, but the nature of loss aversion

makes the LA-investor act as if he is even more risk averse than the EZ-investor, and therefore

further from the log utility investor. Thus, the LA-investor vanishes. This result is proven

in Subsection 4.2.

Although the intuition for this first result comes from the previous literature, the analysis

is nonetheless complex because of the dynamic portfolio choice and savings decisions that our

investors face. In particular, the result does not follow immediately from the previous liter-

ature as loss aversion causes the LA-investor’s saving behavior to be endogenously different

from the EZ-investor’s, which might affect the LA-investor’s survival prospects. Subsection

4.3 demonstrates that this loss-aversion-induced difference in savings cannot overcome the

LA-investor’s disadvantage from his portfolio choice. Whether the LA-investor saves more

or less than the EZ-investor depends on the common value of their EIS. When the common

EIS is greater than one, the intertemporal substitution effect is the dominant force deter-

mining the investor’s saving behavior. The presence of loss aversion makes the LA-investor’s

future prospects less attractive relative to those of the EZ-investor, thereby causing him to

save less, which in turn further hurts his survival prospects. When the common EIS is less

than one, the income effect dominates, and because the presence of loss aversion reduces

the LA-investor’s future prospects, this income effect implies that he consumes less and thus

saves more than the EZ-investor. However, the difference in their savings rates declines with

the wealth share controlled by the EZ-investor. This follows from the fact that as the EZ-

investor controls more wealth, her lower saving rate raises the risk-free rate, which in turn
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increases the current consumption of the LA-investor, as the riskless asset is his primary

investment vehicle (this in turn follows from the kink at his preferences). As a result, when

the LA-investor’s wealth erodes because of his adverse portfolio decisions, his saving rate

decreases as well, which further drags down his wealth accumulation.

The second result – that the LA-investor can survive if he has a larger EIS parameter

or time-patience parameter than the EZ-investor – follows from the endogenous difference

in the investors’ saving behaviors. The intuition is straightforward: When the LA-investor

has a larger EIS parameter or time-patience parameter, his saving rate is larger than that

of the EZ-investor. This favors his long run survival. For example, in a calibrated economy,

when the EZ-investor’s EIS takes a value of 0.5, it is sufficient for the LA-investor to have

an EIS of 0.8 to dominate the market, as this difference in EIS generates a difference in

(annualized) saving rate of almost two percent. Similarly, the LA-investor’s disadvantage

(for survival) induced by his portfolio decisions can be overturned if his (annualized) time-

patience parameter increases by two percent. This result echoes Yan (2008) who shows

that in a dynamic model populated with CRRA investors, a slight difference in the patience

parameter makes it possible for an investor with incorrect beliefs to dominate the market,

even if his beliefs persistently and substantially differ from the truth.

The remainder of this section reviews the relevant literature. Section 2 outlines the

model, and Section 3 characterizes the equilibrium. Section 4 demonstrates the implications

for survival and price impact of loss aversion when it is the only difference in investors’

preferences. Section 5 discusses its implications for survival when investors also have different

EIS parameters or time-patience parameters. Section 6 concludes. The appendix provides

the first-order conditions characterizing investors’ decisions for the case of unit EIS and the

details of the numerical algorithm.

Literature

This paper contributes to two strands of literature. The first is the market selection

literature, which studies what types of investors survive and have a price impact in a dynamic

economy. So far, this literature has primarily focused on selection over beliefs and not over
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preferences.3 Although the idea of market selection dates back to the early 1950s (Alchian,

1950; Friedman, 1953), rigorous analysis of this idea has only recently been done. De Long,

Shleifer, Summers, and Waldman (1991) are the first who cast doubts on the idea of market

selection. They rely on partial equilibrium analysis and show that investors with incorrect

beliefs can survive. Blume and Easley (1992) show that incorrect beliefs can be an advantage

for survival in models with endogenous asset prices but exogenous savings decisions. Sandroni

(2000), Blume and Easley (2006) and Yan (2008) endogenize both savings and portfolio

decisions and show that only investors with beliefs closest to the objective probabilities

will survive in economies with bounded aggregate endowments. Kogan, Ross, Wang, and

Westerfield (2009) demonstrate that in economies with unbounded endowments, investors

with incorrect beliefs may survive.

Investors in all of the above models have time-separable utility functions. Borovička

(2009) has recently studied the belief-selection problem in an economy with Epstein-Zin

preferences and found that agents with distorted beliefs are not driven out of the market

for an empirically relevant range of parameters. Other studies on market selection consider

issues related to incomplete markets (Coury and Sciubba, 2005; Sandroni, 2005; Blume and

Easley, 2006; Gallmeyer and Hollifield, 2008; Cao, 2009), imperfect competition (Palomino,

1996; Kyle and Wang, 1997), comparison of trading rules (Blume and Easley, 1992; Amir,

Evstigneev, Hens and Schenk-Hoppé, 2005; Böhm and Wenzelburger, 2005), and asymmetric

information and learning (Mailath and Sandroni, 2003; Sciubba, 2005; Cogley and Sargent,

2009). Instead of studying belief selection, this paper analyzes preference selection in fric-

tionless and complete market economies, and it is the first study on the market selection

problem between loss aversion and Epstein-Zin preferences.

The second strand of related literature considers the role of loss aversion in determining

trading behavior, asset prices and trading volumes. Loss aversion, that investors are more

sensitive to reductions in the value of their financial wealth than to gains, is a key feature

of prospect theory which was introduced by Kahneman and Tversky (1979). Berkelaar,

Kouwenberg and Post (2004), Gomes (2005) and Kyle, Ouyang and Xiong (2006) study the

3One exception is Condie (2008), which analyzes the market selection problem for an economy populated

with ambiguity averse investors and expected utility investors.
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optimal portfolio choice problem under loss aversion. Benartzi and Thaler (1995) were the

first to use loss aversion to explain the equity premium puzzle. Barberis, Huang and Santos

(2001) extend Benartzi and Thaler’s setting to a dynamic model and find that combining loss

aversion and the “house-money effect” helps to explain the behavior of the aggregate stock

market. Barberis and Huang (2001) find that loss aversion is also useful in understanding

the value effect in the cross-section of stock returns. Grünea and Semmler (2008) study a

production economy and find that a model incorporating loss aversion can match data much

better than pure consumption-based asset-pricing models. McQueen and Vorkink (2004)

show that loss aversion helps to explain the asymmetric GARCH properties of stock returns.

Barberis and Huang (2007, 2009) propose a preference specification that incorporates both

loss aversion and narrow framing and study its applications in portfolio choice and asset

pricing.

All of the above-mentioned asset-pricing models are conducted in a representative agent

framework. Gomes (2005), Gabaix (2007) and Berkelaar and Kouwenberg (2009) explore

the interaction between loss-averse investors and expected utility maximizers. However, all

three studies have a finite horizon model and are therefore unable to answer the question of

whether loss-averse investors survive and affect prices in the long run.

2 The Model

We analyze a pure exchange economy with one perishable consumption good, which is the

numeraire. Time is discrete and lasts forever:  = 0 1 2 . There are two assets–a risk-free

bond and a risky stock. The bond is in zero net supply and earns a gross interest rate of

 between time  and  + 1. The stock is a claim to a stream of the consumption good

represented by the dividend sequence {}∞=0. It is in limited supply (normalized to 1) and
is traded in a competitive market at price . Let  =



and +1 =

+1++1


be the

price-dividend ratio at time  and the gross return on the stock between time  and  + 1,

respectively.

The dividend growth rate +1 , +1


is i.i.d. over time and follows a distribution given
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by

+1 =

⎧⎪⎨⎪⎩  , with probability  ,

, with probability ,

(1)

with 0     , 0    1 and  = 1 −  . We use a binomial distribution for the

dividend growth rate process so that the two tradable assets induce a dynamically complete

financial market. This ensures that our results on survival are driven by the difference

in investors’ preferences and not by any assumed incompleteness in the financial-market

structure. The market structure is important as whether the market-selection argument is

valid depends crucially on the completeness of financial markets (see, among others, Blume

and Easley, 2006; Cao, 2009).

We follow the literature in assuming that the aggregate consumption and aggregate div-

idends are equal.4 Under this assumption, even a representative agent economy with loss-

aversion preferences cannot match the historical equity premium,5 as the equilibrium stock

returns are not volatile enough to induce the loss-averse investor to abandon the stock mar-

ket. We have extend our analysis to a three-asset setting which is capable of generating the

historical equity premium via a combination of loss aversion and narrow framing, and have

found that all our main results hold in this extended model. To focus on our selection results

in the most transparent setting, this extension is not reported in the paper (the results are

available upon request).

The economy is populated by two (classes of) investors, who are distinguished by their

preferences. The first investor, labeled the EZ-investor, derives utility from intertemporal

consumption plans according to Epstein-Zin preferences (Epstein and Zin, 1989). The sec-

ond investor, labeled the LA-investor, is the investor emphasized in the behavioral finance

literature, see Benartzi and Thaler (1995), Barberis, Huang and Santos (2001), Barberis,

Huang and Thaler (2006) and Barberis and Huang (2007, 2009). This investor gets utility

not only from consumption but also from fluctuations in the value of his stock holdings, and

he is loss-averse over these fluctuations.

We use the preference specification developed by Barberis and Huang (2007, 2009) to

4For consumption-based models, see, among others, Lucas (1978) and Mehra and Prescott (1985); for

models studying loss aversion, see, among others, Gomes (2005) and Berkelaar and Kouwenberg (2009).
5See the first economy studied by Baberis, Huang and Santos, 2001, and Subsection 4.1 below.
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describe the LA-investor’s preferences. According to this specification, the EZ-investor’s

preference is simply a degenerate case of the LA-investor’s preference, where the parameter

controlling the term related to loss aversion is set to be zero. Thus, this preference specifi-

cation allows us to isolate the impact of loss aversion on the LA-investor’s wealth dynamics

(survival) and asset prices.

We choose Epstein-Zin preferences to represent arbitrageurs for two reasons. First,

Epstein-Zin preferences allow us to separate the risk-aversion parameter and the elastic-

ity of intertemporal substitution parameter. These two parameters presumably have very

different roles in determining investors’ survival prospects, as the existing market-selection

literature suggests that portfolio decisions, which are more related to risk aversion, and

saving behaviors, which are more related to EIS, affect survival in different ways. Second,

Epstein-Zin preferences deserve more serious investigation on their own, as the recent liter-

ature has shown that Epstein-Zin preferences help to explain many salient features of the

financial market.6

Given that the LA-investor’s preference nests the EZ-investor’s preference, we write a

uniform preference formulation for both investors as follows. The time  utility of investor 

(=EZ, LA) is given by

 =  [  (+1|) +  [ (+1)]]   (2)

where  = 0 and  ≥ 0. Here,  (· ·) is the aggregator function, which combines
current consumption  and the certainty equivalent of future utility to generate current

utility . It takes the form

 () =

⎧⎪⎨⎪⎩ [(1− )
 + 

]
1 , if 0 6=   1

1− if  = 0

(3)

where 0    1 is investor ’s time patience parameter. Parameter  determines the

investor’s elasticity of intertemporal substitution:  = 1 (1− ).

6See Tallarini (2000), Bansal and Yaron (2004), Campanale, Castro, and Clementi (2007), Uhlig (2007),

Gomes and Michaelides (2008), and Guvenen (2009), among others.

8



Function  (+1|) is the certainty equivalent of the random future utility +1 con-

ditional on time  information , and it has the form

 ( |) =

⎧⎪⎨⎪⎩ [(
)]1, if 0 6=    1

exp[(log ()] if   = 0

(4)

where  (·) ≡  (·|) is the expectation operator conditional on information  and where

parameter  determines the investor’s risk attitude toward aggregate future utility, as the

implied parameter  = 1−  is the investor’s relative risk aversion coefficient. We assume
that the investors have correct beliefs so that we can focus on the effects of differences in

loss aversion.

Up to this point, the investor’s preference is entirely standard. What is non-standard

is that a new term,  [ (+1)], is added to the second argument of  (· ·), allowing
the investor to get utility directly from the performance of investing in the stock. This term

captures the non-consumption utility that the agent derives directly from the specific gamble

of investing in the stock rather than just indirectly via this gamble’s contribution to the next

period’s wealth and the resulting consumption; the latter effect has already been captured by

the certainty equivalent function,  (+1|). To ease exposition, we refer to this new term
as loss aversion utility, and its components – parameter , argument +1, and function

 (·) – are further specified as follows.

First, parameter  determines the relative importance of the loss aversion utility term in

the investor’s preference. For the EZ-investor,  = 0, meaning that she derives no direct

utility from financial wealth fluctuations. For the LA-investor,   0, meaning that, to a

certain extent, his utility depends on the outcome of his stock investment over and above

what that outcome implies for total wealth.

Second, variable +1 defines the gamble that investor  is taking by investing in the

risky stock. Specifically, let  be investor ’s wealth at the beginning of time , and let

 be the fraction of post-consumption wealth allocated to the stock. Then this investment

portfolio provides the investor with a gamble represented by

+1 =  ( − ) (+1 −) , (5)
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that is, the amount invested in the stock,  ( − ), multiplied by its return in excess

of the risk-free rate, +1 −. As is standard in the literature (e.g., Barberis and Huang,

2001, 2007, 2009; Gomes, 2005; Barberis and Xiong, 2009), the risk-free rate, , is assumed

to be the “reference point” determining whether a particular outcome is treated as a gain

or a loss: as long as   0, the stock’s return is only counted as a gain (loss) if it is larger

(smaller) than the risk-free rate.

Finally, function  (·) determines how the investor evaluates gains and losses. We follow
Barberis and Huang (2007, 2009) in assuming that  (·) is a piecewise-linear function:

 () =

⎧⎪⎨⎪⎩ , if  ≥ 0

 if   0

(6)

with   1. This function assigns positive utility to gains and negative utility to losses.

More importantly, it assigns greater negative utility to losses than positive utilities to gains

of the same magnitude. This feature is known as “loss aversion” in the literature, and it

is the behavioral bias that the LA-investor exhibits. Parameter  controls the degree of

loss aversion: a one-dollar loss brings the investor   1 units of negative non-consumption

utility, while a one-dollar gain brings him only one unit of positive non-consumption utility.

To summarize, the economy is characterized by the following two group of exogenous

parameters: (i) technology parameters:  , ,  and ; and (ii) preference parameters:

, , {  }=. The technology is defined by equation (1), and the preferences
are defined by equations (2)-(6).

3 Equilibrium

We consider Markov equilibria in which price-dividend ratios, the risk-free rate, and the

optimal consumption and portfolio decisions are all functions of a state variable and in

which the state variable evolves according to a Markov process. The Markov state variable

 is the LA-investor’s wealth as a fraction of aggregate wealth:

 =


 +

 (7)
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Intuitively,  captures the state of the economy, because it determines the strength of the

pricing impact of the LA-investor’s trading behavior. The reason that we can summarize the

state with a single variable is that the preferences of investors are homogeneous in wealth.

A Markov equilibrium is formally defined as follows.

Definition 1 AMarkov equilibrium consists of (i) a stationary price-dividend ratio function,

 : [0 1]→ R++, (ii) a risk-free rate function,  : [0 1]→ R++, (iii) a pair of consumption

propensity functions,7  : [0 1] → [0 1] and  : [0 1] → [0 1], (iv) a pair of stock

investment policies,  : [0 1] → R and  : [0 1] → R, and (v) a transition function of

the state variable,  : [0 1]× {  }→ [0 1], such that

(i) the consumption policy functions and the portfolio policy functions maximize investors’

preferences given the distribution of the equilibrium return processes;

(ii) good and securities markets clear; and

(iii) the transition function of the state variable is generated by investors’ optimal decisions

and the exogenous consumption growth rate process (i.e., equation [1]).

We next go through investors’ decision problems and the market clearing conditions to

construct such an equilibrium.

3.1 Investors’ Decisions

Investor  chooses consumption  and the fraction of post-consumption wealth allocated

to the stock  to maximize

 =  [  (+1|) +  [ (+1)]]

subject to the definition of capital gains/losses in stock investment

+1 =  ( − ) (+1 −)

7Consumption propensity is the ratio of consumption over wealth.
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and to the standard budget constraint

+1 = ( − )+1

where

+1 =  +  (+1 −) (8)

is the gross return on the investor’s portfolio, and functions  (· ·),  (·), and  (·) are given
by equations (3), (4), and (6), respectively.

For brevity, we only derive the first-order conditions characterizing the investor’s optimal

decisions for the case of a non-unit EIS (i.e., for the case of  6= 0 in the aggregator function
 (· ·)). The first-order conditions for the case of a unit EIS are relegated to Appendix A.
The Bellman equation of the investor’s problem is

 ≡  ( )

= max


£
(1− )


 +  [ ( (+1 +1) |) +  ( (+1))]


¤1 

Because functions  (· ·),  (·), and  (·) are all homogeneous of degree one, the indirect
value function  ( ) is also homogeneous of degree one:

 ( ) =  () ≡ 

Therefore,

 = max


⎡⎢⎣(1− )

 +  ( − )



⎡⎢⎣  (+1+1|)

+ [ ( (+1 −))]

⎤⎥⎦

⎤⎥⎦
1



which implies that the consumption and portfolio decisions are separable.

In particular, the portfolio decision is determined by

∗ = max


[ (+1+1|) +  [ ( (+1 −))]] , (9)

12



and after defining the consumption propensity as

 = ,

the consumption decision is made based on

 = max


£
(1− )


 +  (1− )

 (∗)

¤1  (10)

The first-order condition for optimal consumption propensity ∗ is
8

∗ =

µ
1− 


¶1 µ ∗
1− ∗

¶1−1
 (11)

Combining equations (10) and (11) delivers

 = (1− )
1

¡
∗
¢1−1 

which, by the recursive structure, in turn implies

+1 = (1− )
1

¡
∗+1

¢1−1  (12)

Substituting equations (11) and (12) into equation (9) gives the following single program,

which summarizes the investor’s consumption and portfolio decisions:

µ
1− 


¶1 µ ∗
1− ∗

¶1−1
= max



⎧⎪⎨⎪⎩ 

h
(1− )

1
¡
∗+1

¢1−1 +1|
i

+ [ ( (+1 −))]

⎫⎪⎬⎪⎭  (13)

As a consequence, solving the investor’s partial-equilibrium problem boils down to solving a

fixed-point problem defined by the first-order condition and the value function of the above

maximization problem: In the Markov equilibrium, the investor’s consumption policy and

investment policy are both functions of the state variable ,  (·) and  (·); the first-order
8All of the first-order conditions of the investor’s problem are both necessary and sufficient, as the objective

functions are concave.
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condition and the value function of program (13) thus form a system of two equations with

these two unknown functions; given the equilibrium asset return processes (+1 and ),

these partial equilibrium optimal policies can be computed from this system.

It needs certain carefulness to derive the first-order conditions for the portfolio choice,

as the utility function,  (·), the function that the investor uses to evaluate gains/losses, is
not differentiable everywhere but instead has a kink at the origin. As will become clear in

the subsequent analysis, it is this non-differentiability at the origin that is responsible for

the non-participation of the LA-investor in the stock market. Formally, the optimal stock

investment ∗ is characterized by the following conditions:
9

+ , (1− )
1

h


³

(1−1)
+1 


+1

´i1−1


h

(1−1)
+1 

−1
+1 (+1 −)

i
+ [ (+1 −)] = 0 for 

∗
  0

(14)

− , (1− )
1

h


³

(1−1)
+1 


+1

´i1−1


h

(1−1)
+1 

−1
+1 (+1 −)

i
− [ ( −+1)] = 0 for 

∗
  0

(15)

+ ≤ 0 and − ≥ 0 for ∗ = 0 (16)

In particular, as for the EZ-investor, the expressions of + and − are the same

because  = 0. Therefore, her first-order conditions are reduced to the following equation:



h

(1−1)
+1 

−1
+1 (+1 −)

i
= 0 (17)

3.2 Stock Prices and Wealth Dynamics

In this subsection, we rely on market-clearing conditions to derive the expression of price-

dividend ratios  ≡  and the evolution of the state variable .

9To be precise, these conditions apply to the case of a non-unit risk aversion, i.e., they are true when

 6= 1 or  6= 0 in the certainty-equivalent function  (·). As for the case of a unit risk aversion,

simply replace the first terms with (1− )
1 (1−1) log(

∗
+1)+ log(+1)

³
+1−
+1

´
, which can

be obtained from the limiting formula, lim→0
£


¡

¢¤1 = [log()]
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The good market-clearing condition is

 +  =  (18)

Using the definition of consumption propensity, we can express the consumption levels as

products of consumption propensity functions and individual wealth levels:

 =  () and  =  ()

Then, substituting the above expressions into the good-market clearing condition gives

 () +  () =  (19)

Let  =+ be the aggregate wealth of the whole economy at time . Recall

that the definition of  in equation (7) implies that = (1− ) and = .

Therefore, equation (19) becomes

[ () (1− ) +  ()] = 

which implies

 =


 () (1− ) +  ()

 (20)

Because the bond is zero net supply, and the stock has a net supply of one share, the

aggregate economy wealth is also equal to the stock price plus its dividend:

 =  +. (21)

Combining equations (20) and (21) gives the price-dividend ratio function:

 () =
(1− ) ()

(1− ) () +  ()

1−  ()

 ()

+
 ()

(1− ) () +  ()

1−  ()

 ()
 (22)
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Equation (22) says that the price-dividend ratios in the heterogeneous agent economy are

equal to a weighted average of two terms:
1−()
()

and
1−()
()

. The expressions of these

two terms correspond to the price-dividend ratios in the representative agent economies pop-

ulated only by the EZ-investor and by the LA-investor, respectively.10 So, roughly speaking,

the price-dividend ratios in a heterogeneous economy is the weighted average of the price-

dividend ratios in representative agent economies, although the weight is not simply the

wealth share but is instead a rather complicated expression related to the wealth share and

investors’ optimal consumption policies.

Given the price-dividend ratio function  =  () and the Markov structure of the

state variable evolution +1 =  ( +1), the distribution of stock returns +1 also has a

Markov structure and is determined by

 ( +1) ≡ +1 =
+1 ++1



=
+1+1 + 1



+1



=
 ( ( +1)) + 1

 ()
+1. (23)

We now turn to examine how the state variable, , evolves over time. The gross return

to the LA-investor’s optimal portfolio is

 ( +1) ,+1 =  + ∗ (+1 −)

=  () +  () [ ( +1)− ()] 

(24)

Therefore, the LA-investor’s next period wealth is

+1 = [1−  ()] ( +1)

=
[1−  ()] ( +1)

 () (1− ) +  ()

 (25)

where the second equation follows from  =  and equation (20).

Applying equation (20) one period forward gives

+1 =
+1

 (+1) (1− +1) +  (+1)+1

 (26)

10To see this, note that, in a representative agent economy, the agent holds the whole share of the stock

and consumes the entire dividend, which means that  =  ( +) =  and thus  =

(1− ) .
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Combining equations (25) and (26) and recalling the definition of +1 =
+1

+1
and +1 =

+1


, we have

+1 =
[1−  ()] ( +1) [ (+1) (1− +1) +  (+1)+1]

[ () (1− ) +  ()] +1
 (27)

which implicitly determines the evolution of : +1 =  ( +1).

Finally, substituting  = (1− ),  =  and equation (20) into the

stock-market clearing condition,

 = ∗
¡
1− ∗

¢
 + ∗

¡
1− ∗

¢


we link investors’ policy functions to the price-dividend ratio function as follows:

 () =
 () [1−  ()] (1− ) +  () [1−  ()]

 () (1− ) +  ()

 (28)

To summarize, computing the equilibrium is involved with solving the seven unknown

functions,  (·),  (·),  (·),  (·),  (·),  (·), and  (· ·) from the system formed

by equations (13)-(16), (22)-(24), (27) and (28). This system consists of seven independent

equations: two value functions (equation [13] for  =EZ,LA), two first-order conditions (one

of equations [14]-[16] for  =EZ,LA), two market clearing conditions (equations [22] and

[28]), and a state variable evolution function (equation [27]). Equations (23) and (24) are

intermediate steps for calculating the wealth dynamics.

Two remarks are in order. First, although the market is complete in the present project,

the standard Pareto efficiency technique commonly used in the market-selection literature

(e.g., Blume and Easley, 2006; Yan, 2008; Borovička, 2009; Kogan, Ross, Wang and West-

erfield, 2009) cannot be applied here, as the LA-investor’s preference depends not only on

the intertemporal consumption plans but also on the endogenous stock return process per

se, thereby making it necessary to explicitly solve the equilibrium. We therefore develop an

algorithm based on Kubler and Schmedders (2003) to compute the Markov equilibrium and

use simulations to analyze the survival and price impact of the LA-investor. The details of

the algorithm are delegated to Appendix B.
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Second, our analysis ignores the issue of the existence and uniqueness of the equilibrium.

As is well-known in the literature, it is hard to establish the general results on the existence

and uniqueness of the equilibria in heterogeneous agent models. Therefore, in the present

paper, we simply start the analysis under the assumption that an equilibrium exists and

use numerical methods to find this equilibrium. Rigorously speaking, a numerical method

can never find the exact equilibrium; what it finds, if any, is the “-equilibrium” defined by

Kubler and Schmedders (2003), who interpret the computed -equilibrium as an approximate

equilibrium of some other economy with endowments and preferences that are close to those

in the original economy.

4 Implications of Loss Aversion for Survival and Price

Impacts

In this section, we first analyze the representative agent economies, that is, economies pop-

ulated by homogeneous investors (see Subsection 4.1). This analysis serves two purposes.

First, it verifies the result that loss aversion raises equity premiums, which is well-known in

the literature (e.g., Benartzi and Thaler, 1995; Barberis, Huang and Santos, 2001). Second,

it provides a useful springboard for our analysis of the heterogeneous agent economies, as

it helps to develop the intuitions for how loss aversion changes an investor’s investment and

saving behaviors.

We then move to the more realistic economies populated by both the EZ-investor and the

LA-investor and apply the algorithm in Appendix B to numerically compute the equilibrium

price functions,  (·),  (·), policy functions,  (·),  (·),  (·),  (·), and the state
variable transition function,  (· ·). We use simulations to show how loss aversion affects
the investor’s survival and pricing impact via portfolio decisions in Subsection 4.2 and via

saving behaviors in Subsection 4.3. To isolate the role of loss aversion in determining the

investor’s survival prospects, in these two subsections, we assume that both investors have

otherwise identical preferences except that the LA-investor derives loss aversion utility and

the EZ-investor does not.

Before solving the models, we need to calibrate the parameter values. Because we are
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interested in the implications of preferences, we allow the preference parameters to vary

over a certain range while fixing the four technology parameters in equation (1) for all

computations and simulations. We interpret one period as one month and follow Mehra and

Prescott (1985) in setting  =  =
1
2
so that the economy is in booms and recessions with

equal probability.11 Based on the data spanning the 20th century, the historical mean and

volatility of the log annual consumption growth process are 184% and 379%, respectively

(see Barberis and Huang, 2009). To match these two moments, we set  = 10126 and

 = 09906. Table 1 summarizes our choice of technology parameters.

TABLE 1 ABOUT HERE

4.1 Representative Agent Economy

In this subsection, we assume that the EZ-investor and the LA-investor have identical pref-

erences; that is,  =  ≡ ,  =  ≡ ,  =  ≡  and  =  ≡ . As a

result, the economy is the well-studied representative agent economy.

In this case, the representative agent has to hold the stock in equilibrium, so that the

first-order condition given by equation (14) with +1 = +1 defines the optimality of

the investor’s investment decision. As mentioned in the discussions after equation (22), the

good-market clearing condition links the price-dividend ratios  to the optimal consumption

policy  as follows:

 = (1− ) ( +)⇒  =
1− 



. (29)

Therefore, equations (13), (14) and (29) define a system for three unknowns: ,  and .

Given the i.i.d. investment opportunities, we conjecture that

(  ) = ( ) , ∀. (30)

The problem can be easily solved using any non-linear solver.

Table 2 reports the annualized continuously compounded equilibrium equity premiums

11Some studies have assumed that loss-averse investors evaluate investment performance on an annual

frequency (e.g., Benartzi and Thaler 1995; Barberis, Huang and Santos, 2001). Our results are valid if we

take one period as one year in our economy.
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(  = 12 [ (log+1)− log ]), risk-free rates (

 = 12 log) and consumption policies

( = 12) for a variety of combinations of preference parameter values. For all combina-

tions, hold constant the time patience parameter , the loss-aversion parameter  and the

relative risk-aversion coefficient :  = 0998,  = 225 and  = 1 (or  = 0). The

choice of  is borrowed from Bansal and Yaron (2004) and it corresponds to an annual time-

patience parameter of 0976 = 12. The choice of  is based on the estimation of Tversky

and Kahneman (1992). When EIS is equal to one (i.e.,  = 0) and when there is no loss

aversion utility (i.e.,  = 0), setting  = 1 (or  = 0) reduces the investor’s preference to

an expected log utility, which is an important benchmark case that the market-selection lit-

erature has been focusing on (Breiman, 1961; Hakansson, 1971; De Long, Shleifer, Summers,

and Waldmann, 1991; Blume and Easley, 1992).

TABLE 2 ABOUT HERE

Panels A, B and C correspond to different values of EIS:  = 1 ( = 0),  =

08 ( = −025) and  = 12 ( = 16). To check the role of loss aversion, in each

panel, parameter , which controls the relative importance of the loss aversion utility in the

investor’s preference, is set at three different values:  = 0,  = 00005 and  = 0001. When

 = 0, the investor’s preference does not exhibit loss aversion, and this economy has been well

studied in the literature (e.g., Weil, 1989). When   0, the investor’s preference exhibits loss

aversion; such an economy is the focus of behavioral finance, such as Benartzi and Thaler

(1995), Barberis, Huang and Santos (2001), and Barberis and Huang (2007, 2009). The

choice of both positive values of  in the table, 00005 and 0001, is justified by the investor’s

attitudes to independent large and small monetary gambles: both parameterizations of the

investor’s preference satisfy Barberis and Huang’s conditions L and S (2007, p 217 and p

219).12 The last two columns of Table 2 report the premiums the representative agent would

pay to avoid a large gamble and a small gamble, which are computed according to equation

12The literature cares about investors’ attitudes to independent monetary gambles, as it was, in part, the

difficulty that researchers encountered in reconciling the equity premium with these attitudes that launched

the equity premium literature in the first place. Barberis and Huang’s (2007) condition L is: “An individual

with wealth of $75,000 should not pay a premium higher than $15,000 to avoid a 50:50 chance of losing

$25,000 or gaining the same amount.” Their condition S is: “An individual with wealth of $75,000 should

not pay a premium higher than $40 to avoid a 50:50 chance of losing $250 or gaining the same amount.”
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(34) in Barberis and Huang (2009, p 1566).

Three notable patterns show up in Table 2. The first pattern regards the equity premium.

In all three panels, when  = 0, that is, when loss aversion is absent in the investor’s

preference, the equity premium is quite small (0.07%) relative to its historical value (6%),

which is the well-known equity premium puzzle. Once loss aversion is introduced, the equity

premiums are raised significantly. Say, when  = 0001, the model can generate an equity

premium as high as 3.01%, which is more than 40 times the equity premium corresponding

to an economy populated by only EZ-investors. The increased equity premiums still fall

short of the empirical value, as in our model, the stock is a claim to the smooth aggregate

consumption process, and, as a result of the constant equilibrium price-dividend ratios (see

equation [30]), the stock returns are not volatile enough to cause the loss averse investor to

be scared of holding the stock.13 As mentioned before in Section 2, this mismatch between

the model-generated equity premium and the historical equity premium does not have any

impact on our analysis. What really matters is that the LA-investor is more reluctant to hold

the stock than the EZ-investor, which is also an assumption maintained in the behavioral

finance studies relying on loss aversion to explain the equity premium puzzle.

The second pattern concerns the risk-free rate. In all three panels, the risk-free rate

decreases with . This occurs because as the investor is more concerned about fluctuations

in the value of his financial wealth and as he is more loss-averse, he is more inclined to

allocate wealth to the safe asset to avoid the potential painful losses associated with the

risky asset. This suggests that in a heterogeneous agent economy populated by both the

LA-investor and the EZ-investor, the bond is more attractive to the former than to the latter.

The third pattern is about the consumption policy. When EIS is equal to one, the in-

vestor’s monthly saving ratio is optimally chosen to be equal to the time patience parameter,

. Therefore, in Panel A, the optimal consumption propensity  is independent of parame-

ter . However, when EIS is different from 1,  varies with :  decreases (increases) with

 when EIS is less (greater) than 1 in Panel B (Panel C). As is standard in the portfolio

choice problem for recursive preferences, two forces – the income effect and the substitution

13Barberis, Huang and Santos (2001) also study the pricing impact of loss aversion in a representative

agent economy with dividends equal to consumption, and they report an equity premium of 1.26% as the

relative risk aversion coefficient is equal to 1 (see the top part of their Table II), which is close to the equity

premium generated in our model (1.22% when  = 00005).
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effect – are at play here. The asymmetric treatment of losses from gains in the loss aversion

utility tends to lower the value, measured in utility terms, of the investor’s future investment

opportunities; that is, a higher  tends to yield a lower ∗ in equation (9). This lowered

∗ has two effects on current consumption: it lowers consumption propensity through the

income effect but raises consumption propensity through the substitution effect. When EIS

is below 1, the income effect dominates, so that  decreases with ; when EIS is above 1,

the substitution effect dominates, and the dependence of  on  reverses as a result. The

different responses of  to  in different cases of EIS suggest that how loss aversion affects

the LA-investor’s survival might depend on whether EIS is greater than or smaller than 1,

as the literature suggests that saving behavior is a key determinant on survival. This will

be examined in Subsection 4.3.

4.2 EIS=1: Portfolio Selection

In this subsection, we study the heterogeneous agent economy and fix EIS at 1, so that both

investors optimally choose to have a constant monthly consumption-wealth ratio: ∗ =

1 − , for  =EZ, LA. We assume that the preferences of both investors are otherwise

identical except that the LA-investor derives loss aversion utility, while the EZ-investor does

not. So, except that   0,  = 0, all other parameters are the same across investors:

 =  ≡ ,  =  ≡  and  =  ≡ . The assumption of a common time-

patience parameter implies that both investors have the same endogenous saving rate. The

focus of this subsection is therefore essentially how loss aversion changes the LA-investor’s

portfolio decision, which in turn affects the LA-investor’s long run survival and his pricing

impacts in a complete financial market.

4.2.1 Survival

We follow the market selection literature, such as Yan (2008) and Kogan, Ross, Wang

and Westerfield (2009), in defining the “extinction”,“survival” and “dominance” of the LA-

investor in terms of his wealth shares as follows.
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Definition 2 The LA-investor is said to become extinct or vanish if

lim
→∞

 = 0, a.s.;

to survive if extinction does not occur; and to dominate the market if

lim
→∞

 = 1, a.s..

Our subsequent analysis suggests that the LA-investor will vanish via the channel of

portfolio decisions if the presence of loss aversion in his preference causes him to be further

from the log investor in terms of risk attitude than the EZ-investor. We further show that

empirically relevant parameter values typically lead to this result, although the process is

slow.

To illustrate how the LA-investor’s wealth shares () evolve over time, Table 3 reports

their medians at times  = 60, 120, and 600 months (i.e., 5, 10 and 50 years) when the

LA-investor has initial wealth shares of 0 = 05 and both investors have a relative risk

aversion coefficient of 1 (Panel A) or 3 (panel B). To understand the role of loss aversion in

determining the investor’s survival prospects, we report the results for various values of ,

which controls the degree of loss aversion. The technology parameters are fixed at the values

in Table 1. The time patience parameters are  =  = 0998 and parameter  is set

as 0001.

TABLE 3 ABOUT HERE

The medians of  are obtained from simulations. We first use the algorithm described

in Appendix B to solve the equilibrium state transition function  (· ·) and then use it to
simulate  = 5000 economies. For each economy, we make  = 600 independent draws

of +1 from the distribution described in equation (1) to simulate a time series {+1}=1.
We then use the solved function  (· ·) to calculate the next-period state +1. Finally the

medians of  are estimated from the 5,000 simulated sample paths at time .

The results in Table 3 suggest that the insight in De Long, Shleifer, Summers, and

Waldman (1991) and Blume and Easley (1992) holds for recursive preferences in a general
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equilibrium setting: the rate at which an investor’s wealth grows depends on how close

his/her preference is to log utility, i.e., how close his/her coefficient of relative risk aversion is

to one. In Panel A of Table 3, the EZ-investor is the log investor, since  =  = 1.

We can see that for all values of , the LA-investor’s wealth shares shrink as time passes.

This suggests that in an economy populated with the log investor and the LA-investor, it is

always the log investor who accumulates wealth at a faster rate.

In Panel B of Table 3, we change the relative risk aversion coefficient of both investors

from 1 to 3, so that the EZ-investor is no longer the log investor. In this case, we observe

that the LA-investor sometimes survives, while at other times, he vanishes: when  = 105,

the LA-investor’s wealth shares increase over time, while when  = 15, 225, or 3, his wealth

shares decrease over time. When  = 3, the EZ-investor is more risk averse than the log

investor. If  is close to 1, the loss aversion utility in the LA-investor’s preference is close to

the expected gains/losses (i.e.,  [ (+1)] ≈  (+1)). This causes the LA-

investor’s preference as if to be generated from combining the EZ-investor’s preference and

the risk neutral investor’s preference, leading the LA-investor to hold portfolios corresponding

to a greater risk tolerance. Therefore, the LA-investor can potentially be closer to the log

investor in terms of risk attitude than the EZ-investor, which explains his survival for the

case of  = 1. On the other hand, if  is much greater than 1, as we believe is likely,

loss aversion penalizes losses much stronger than it rewards gains, making the LA-investor

reluctant to invest in the volatile stocks. This causes the LA-investor to mimic an investor

who is more risk averse, and hence further from log utility, than the EZ-investor. Therefore,

the LA-investor vanishes in the long run.

Table 4 verifies the above intuitions. The first row of both panels shows the value of the

equity premium, , in the representative agent economy populated with the LA-investor

when the model parameters take the same values as those in Panel B of Table 3. The second

and third rows compare  to log and , the equity premiums emerging from

two different representative agent economies populated with the log investor and with the

EZ-investor, respectively. This comparison helps to determine whether the LA-investor is

closer to the log investor than the EZ-investor, and hence whether he survives. For instance,

when  = 15, 225, or 3, we have     log, which suggests that both the
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LA-investor and the EZ-investor are more risk averse than the log investor and that the

LA-investor is more risk averse than the EZ-investor. Thus, the EZ-investor’s preference is

closer to the log utility and the LA-investor vanishes. In contrast, when  = 105, we have

    log, suggesting that the EZ-investor is more risk averse than the LA-

investor, who is in turn more risk averse than the log investor. As a result, the LA-investor

is closer to the log investor and survives.

TABLE 4 ABOUT HERE

Another message conveyed by Table 3 regards the speed of the market selection process.

In terms of wealth shares, the process is slow. For example, for those parameterizations

with   1 considered in Table 3, after 50 years (at  = 600), on a typical sample path,

the LA-investor loses less than 30% of his initial wealth share. This is consistent with Yan

(2008) who shows that it takes hundreds of years for an investor with incorrect beliefs to

lose half of his wealth share in an economy populated with heterogeneous expected utility

maximizers.

4.2.2 Price impact

The effectiveness of the market selection mechanism should be judged by how the price

impacts and not the wealth shares of the LA-investor change over time, as what one really

cares about is whether the behavior of asset prices can largely be captured by models without

the LA-investor. We use the ratio of the conditional equity premium in the heterogeneous

agent economy to that in the representative agent economy with only the EZ-investor to

capture the price impact of the LA-investor at state ; that is,

 () =
 (+1 −| = )

 (+1 −| = 0)
 (31)

Although we focus on the implication of loss aversion for equity premiums, we believe

that our intuitions can be extended to its implications for other dimensions of asset prices.

For example, Barberis, Huang and Santos (2001) rely on dynamic loss aversion (i.e., a com-

bination of loss aversion and “the house money effect”) to generate excess volatility of stock
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returns in a representative agent economy. If loss aversion does not affect equity premi-

ums in the heterogeneous agent economy in the long run, there is no reason to believe that

introducing “the house money effect” will produce excess volatility in such an economy.

Table 5 reports the dynamics of  in a variety of economies. The parameters

take the same values as those in Table 3. Unlike Table 3, Table 5 only reports results for

the case of  = 225 and not for the cases of  = 105, 15 and 3: the case of  = 105 is not

empirically plausible, while the results in cases of  = 15 and 3 are similar to those in the

case of  = 225.14 In addition, unlike Table 3 where the LA-investor starts with half of the

aggregate wealth, Table 5 assumes that the LA-investor’s initial wealth shares can take four

possible values, 0 = 01, 05, 09 or 1, because, as will become clear shortly, the dynamics

patterns of the price impact are slightly different depending on the magnitudes of 0. In

particular, when 0 = 1, the economy becomes a representative agent economy with only

the LA-investor, which generates the largest price impact of loss aversion.

TABLE 5 ABOUT HERE

We observe that in all cases, as time passes, the LA-investor gradually loses his impact

on the equity premiums, because the medians of  gradually decline. For example,

in Panel A, when 0 = 05,  starts with a value of around 2, after 5 years ( = 60),

it declines to 196, and after 50 years ( = 600), it further drops to 183. This result is not

surprising given that, according to Table 3, the LA-investor’s wealth shares shrink over time

for parameterizations considered in Table 5.

Figure 1 graphically depicts the dynamics of the whole simulated probability density

functions (p.d.f.s) of the LA-investor’s wealth shares in Panels (a1)-(a3) and his price impacts

in Panels (b1)-(b3) for the case of  =  = 1. The p.d.f.s are estimated non-

parametrically from the simulation data in Table 5. As time passes, all p.d.f.s shift to the

left, illustrating how the LA-investor’s wealth shares and thus his impact on asset prices

14In Table III, we are interested in these three cases of  = 105, 15 and 3, because we want to understand

whether the insight on survival in Blume and Easley (1992) can be extended to the recursive preferences.
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decrease over time with high probability.

FIGURE 1 ABOUT HERE

In terms of price impacts, the market selection mechanism can be quite effective in the

following two senses. First, in the heterogeneous agent economy, the LA-investor might opti-

mally choose not to participate in the stock market, so that the conditional equity premium

is determined by the first-order condition of the EZ-investor and not directly affected by loss

aversion, leading to a substantially lower equity premium. This occurs when  is not very

high, that is, when the EZ-investor controls a large fraction of the aggregate wealth and her

trading lowers the conditional equity premium and makes the stock not attractive to the

LA-investor.

For example, in Panel A of Table 5, the last column shows that  is around 19;

that is, in representative agent economies, loss aversion raises equity premiums by as much

as 19 times the value produced by Epstein-Zin preferences. However, in the heterogeneous

agent economy, when 0 = 05,  drops to a value around 2. So, introducing

heterogeneity significantly reduces the equity premium. This is consistent with Chapman and

Polkovnichenko (2009) who show that the risk premium is sensitive to ignoring heterogeneity

in a static model in which investors exhibit first-order risk aversion.

Second, even when 0 is high and the price impact of loss aversion is initially big, it is

likely that a small drop in wealth shares leads to a large drop in price impact. For instance,

in Panel A of Table 5, when 0 = 09,  is around 10 at time 0. However, after

five years ( = 60), it drops sharply to 7 and after 50 years ( = 600), it further drops to 3.

Figure 2 displays  in the left panel and the LA-investor’s investment policy

function  in the right panel for this economy. There is a kink in the price impact function,

 , in the left panel, and a decline in  leads to a large drop of  at the

kink. Comparing Panel (a) with Panel (b), it can be seen that the location of the kink of

 is determined by the level of the wealth share at which the LA-investor starts to

buy the stock. So, if the LA-investor’s initial wealth share happens to be around the level at

which he is just willing to purchase the stock, then a small decline of his wealth share will
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cause him to switch to holding the risk-free asset only, which lowers  sharply.

FIGURE 2 ABOUT HERE

To summarize, for the unit-EIS case, if the LA-investor differs from the EZ-investor only

in terms of loss aversion utility, that is, except for   0 and  = 0, the other preference

parameters are identical across investors, then for empirically relevant values (i.e., when

 = 15, 225 and 3 in Table 3), the LA-investor vanishes in the long run, and, as a result,

so does his price impact. The market selection process is slow in terms of wealth shares, but

in terms of price impact, the selection mechanism can be effective. In the following analysis,

we will focus only on the dynamics of wealth shares, as the relationship between the wealth

share dynamics and the pricing impact dynamics obtained in this subsection is still valid in

the case of a non-unit EIS.

4.3 EIS6=1: Saving Behavior
The analysis in Subsection 4.1 suggests that when EIS is not equal to 1, loss aversion can

change the investor’s saving behavior, which might affect the investor’s wealth accumulation

and survival prospects. In this subsection, we investigate this possibility in the heterogeneous

agent economy. Again, we assume that the preferences of both investors are identical except

that   0 and  = 0.

When  =   1, the intuition in the representative agent economies implies

that the LA-investor consumes more than the EZ-investor, which hurts his survival prospects.

Because the previous subsection shows that in the absence of different saving behaviors, the

LA-investor already loses to the EZ-investor; then, this extra force coming from saving should

cause the LA-investor to vanish at a faster speed. This is indeed the case, as verified by Figure

3, which plots the distributions of  and  in years 5 ( = 60), 10 ( = 120), and

50 ( = 600), for the case of  =  = 12. The distributions are obtained in the

same way as in Figure 1, and the technology parameters are fixed at the values in Table 1,

while the other preference parameters are  =  = 0998,  =  = 1,  = 225

and  = 0001. Indeed, the p.d.f.s of  and  shift to the left as time passes,
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suggesting that the LA-investor is losing his wealth share and price impacts over time.

FIGURE 3 ABOUT HERE

When  =   1, the analysis in Subsection 4.1 suggests that the LA-investor

saves more than the EZ-investor, which favors his survival. As a result, two forces are

at play here: portfolio decisions are against the LA-investor’s wealth accumulation, while

consumption decisions benefit it. It thus becomes nontrivial to explore whether the saving

force is strong enough to reverse the result in the previous subsection. Table 6 presents the

distributions of  and  in Panels A and B for the case of  =  = 08.

The other parameter values are identical to those used in Panel A of Table 5. We here assume

that both investors have a relative risk aversion coefficient of 1, because the key insight in

Subsection 4.2 is that the role of loss aversion is making the LA-investor more risk averse

than the EZ-investor, and thus the result will be insensitive to the choice of the relative

risk aversion coefficient, as long as the LA-investor is maintained to be more cautious in

buying the stock. Comparing Table 6 with Tables 3 and 5, one can find that the results are

almost identical, implying that in calibrated economies, the difference in saving behaviors

induced by the common small EIS shared by both investors is not large enough to help the

LA-investor survive in the long run.

TABLE 6 ABOUT HERE

To better understand the effect of savings, Figure 4 plots the consumption policies for

both investors in its left panel for the parameter configuration of Table 4. Figure 4 also

plots the equilibrium risk-free rate function in its right panel because, as suggested by the

analysis in Subsection 4.1, the risk-free rate is the LA-investor’s favored asset and thus

largely determines his future utility. Figure 4 shows that, although the difference in the

endogenous monthly saving rates of the two investors can be large, with a maximum of

23 basis points (which corresponds to a difference of 2.8% in annual saving rates) achieved

at  = 1, this difference shrinks sharply, as the LA-investor loses wealth over time. The

intuition is as follows: As  decreases, the EZ-investor controls more wealth, and because

she saves less relative to the LA-investor, the risk-free rate increases, which in turn raises
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the LA-investor’s future income because he tends to invest in the risk-free rate and, as a

result of anticipating this rise in the permanent income, he consumes more. Then, once

his wealth-eroding investment positions start to reduce his wealth share, he also saves less,

making his situation even worse in terms of wealth accumulation, which explains why the

difference in the endogenous saving behavior cannot overcome the disadvantage coming from

the portfolio positions of the LA-investor in terms of wealth accumulation.

FIGURE 4 ABOUT HERE

In sum, for the non-unit EIS case, if the LA-investor differs from the EZ-investor only

in a way such that he derives loss aversion utility, then for empirically relevant parameter

values, he will lose his wealth share in the long run, and his price impacts diminish along

the way.

5 Multi-Dimensional Heterogeneity in Preferences

So far, our analysis has assumed that the LA-investor and the EZ-investor are different only

in one dimension: the LA-investor derives loss aversion utility, while the EZ-investor does

not. However, it is highly likely that they are also different in other dimensions. This raises

the question of how robust the result that the LA-investor vanishes in calibrated economies

is to the introduction of additional differences in the investors’ preferences.

Before examining the effect of the multi-dimensional heterogeneity of preferences on sur-

vival, we briefly discuss what kind of heterogeneity might be plausible in reality. In principle,

on top of loss aversion utility, investors can be different in the following three dimensions:

risk aversion (parameter ), EIS (parameter ), and time preference (parameter ). Risk

aversion might not be a good candidate, as the very reason why the literature introduces

loss aversion is to increase the LA-investor’s risk aversion, which serves to generate a high

equity premium. Therefore, to make the analysis empirically relevant, any perturbation of

the risk aversion parameter  should not reverse the order of the investors’ risk attitude and

would not change the survival prospects of the LA-investor.

However, in the existing literature, researchers have not reached a consensus regarding

30



the “reasonable” value for the EIS or the time discount rate. Some studies estimate the EIS

to be well above 1 (e.g., Hansen and Singleton, 1982; Attanasio and Weber, 1989; Guvenen,

2001; Vissing-Jorgensen, 2002), while others estimate it to be well below 1 (e.g., Hall, 1988;

Epstein and Zin, 1991; Campbell, 1999).15 Similarly, the calibrations of the time-patience

parameter  are widely dispersed, with its annualized counterpart 12 ranging from 0.89

(Campbell and Cochrane, 1999) to 1.1 (Brennan and Xia, 2001). Therefore, in the following,

we investigate the effect of a differing EIS or a differing time-patience parameter on the

LA-investor’s survival. Whether these differences are “reasonable” is an empirical issue and

is subjective. The point of the present paper is to provide a framework that can be used to

analyze under what conditions the LA-investor survives and his pricing impact persists.

5.1 Different EIS Parameters

To set the deck against the EZ-investor, we need to assume that the LA-investor has a larger

EIS than the EZ-investor, so that he would save more than the EZ-investor in a growing

economy. Specifically, we set  = 08, and decrease  to see when the LA-investor

will survive for an economy with the technology parameters fixed at the values in Table 1 and

the other preference parameters fixed at  =  = 0998,  =  = 1,  = 225

and  = 0001. It turns out that when  = 05, the LA-investor starts to dominate

the economy. The result is driven by the different saving behaviors induced by the different

EIS. Figure 5 displays the dynamics of  in Panel (a) and the consumption policies in Panel

(b) assuming that 0 = 05. Panel (a) shows that the p.d.f.s shift to the right as time passes,

suggesting that the LA-investor tends to dominate the market in the long run. Panel (b)

shows that the difference in the consumption ratios does not drop much when  declines

from intermediate levels of , because when  decreases, the EZ-investor consumes more

as a result of a strong income effect of the raised risk-free rate. Therefore, when the wealth

share of the LA-investor declines due to his portfolio decisions, his advantage in terms of

saving behavior will help him.

FIGURE 5 ABOUT HERE

15See Guvenen (2006) for a comprehensive review of the empirical evidence on the heterogeneity in the

EIS across the population.
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5.2 Different Time Patience Parameter 

We conduct a similar exercise as in examining the effect of different EIS parameters. Specifi-

cally, we set  = 0998 and decrease  to examine when the LA-investor dominates the

market in the long run. The survival result is very sensitive to the time discount rate: a slight

difference in  as small as 0002 can overturn the effect of the LA-investor’s portfolio deci-

sions on his survival prospects. To illustrate this sensitivity, we set  =  = 12,

which means that the deck is set against the LA-investor, as he would consume more

than the EZ-investor if they had a common . Other preference parameters are fixed at

 =  = 1,  = 225 and  = 0001, and the technology parameters are fixed

at the values in Table 1. The result is robust to different relative risk aversions. Figure

6 depicts the dynamics of the distributions of  and investors’ consumption propensities

when the LA-investor has half of the total wealth at time 0. Panel (a) shows that, as time

passes, the p.d.f.s of  shift to the right, suggesting that the LA-investor is accumulating

wealth at a faster rate than the EZ-investor. Panel (b) displays the large difference in the

endogenous monthly saving ratios induced by the time-patience parameter. The minimum

of this difference is 013%, and the maximum is 035%. These large magnitudes account for

the LA-investor’s eventual prosperity.

FIGURE 6 ABOUT HERE

6 Concluding Remarks

This paper studies the survival and price impact of loss-averse investors in a financial econ-

omy in which “arbitrageurs” have Epstein-Zin preferences. We find that if the LA-investor

differs from the EZ-investor only in the way of deriving loss aversion utility, then the LA-

investor will be driven out of the market and thus will have no effect on long run asset

prices for an empirically relevant range of parameters. In the short run, the selection process

is slow in terms of wealth shares, but it can be effective in terms of price impacts. Once

additional heterogeneity is recognized in investors’ preferences, for example, when they are

heterogeneous with respect to their EIS or time-patience parameters, the LA-investor can
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survive because of the different equilibrium saving behaviors induced by this new hetero-

geneity. This paper thus helps us to understand under what conditions loss aversion can

affect asset prices in a dynamic financial market. Empirical studies are needed to examine

whether and to what extent the real investors who exhibit loss aversion are different from

those who do not in terms of their EIS or time-patience parameters, which in turn, with the

help of our framework, is useful in determining the validity of the statement made in the

representative agent models in behavioral finance.

We conclude by discussing the robustness of our results and some generalizations of the

model developed above. As we mentioned in the main text, our results are robust to the

introduction of narrow-framing, and although our focus on the price impact of loss aversion

has been limited to equity premiums, we believe that the intuitions can arguably apply to

other dimensions of asset prices, such as the excess volatility studied in Barberis, Huang

and Santos (2001) and the GARCH effect in stock returns studied in McQueen and Vorkink

(2004), by introducing additional features, such as the “house money effect” in Barberis,

Huang and Santos (2001) and “state-dependent sensitivity to news” in McQueen and Vorkink

(2004), into the LA-investor’s preferences.

The analysis in our previous sections has been conducted under the technology parameter

configuration specified in Table 1. We have verified that most of our results remain unchanged

under different parameter values, as long as the volatility of the consumption growth rate is

not unreasonably high (say, the consumption growth rate volatility is lower than 20% on an

annual basis), given that loss aversion is one form of first-order risk aversion and thus has

its largest impact on investor’s risk attitude for gambles of small or intermediate volatilities.

Our model allows for many possible generalizations. First, it has assumed a complete

market structure. The survival result might be very different in an incomplete market, as

suggested by the existing literature (e.g., Blume and Easley, 2006; Cao, 2009). It would thus

be interesting to compute how market incompleteness would change the results. Second,

this paper focuses only on the loss aversion feature of prospect theory and ignores its two

other features, namely, diminishing sensitivity and probability weighting. The literature has

shown that both features help to explain certain financial phenomena. For example, Li and

Yang (2008) show that diminishing sensitivity can generate price momentum, while Barberis
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and Huang (2008) argue that probability weighting leads to the overpricing of positively

skewed securities. It would also be interesting to examine the survival and price impacts

of an investor whose preference has all three features of prospect theory. Third, the loss-

averse investors are homogeneous in our model. It is likely that even loss-averse investors are

heterogeneous in a number of ways: in the degree of sensitivity to losses (parameter ), in

the relative importance of loss aversion utility in their preferences (parameter )
16 or in the

reference levels that determine their gains/losses. We believe incorporating this heterogeneity

would not change our results dramatically. Finally, in our model, both investors live and

trade for ever. In reality, it is likely that investors voluntarily enter and exit the economies

for some exogenous reasons, such as life cycles. We can embed our current setting into an

overlapping generation model and assume that in each period, investors with different levels

of loss aversion bias are replenished with some probability. We leave all these interesting

questions for future research.

16In fact, the difference between the LA-investor and the EZ-investor in our model can be viewed as an

extreme case of differing :  = 0 and   0.
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Appendix

A. First-Order Conditions for the Case of EIS=1

This appendix derives the conditions that define the investor’s optimal decisions when the

EIS takes the value of 1 ( = 0). In this case, the aggregator function has the Cobb-Douglas

form:

 () = 1−

The Bellman equation becomes

 = max



1−
 [ [ (+1 +1) |] +  [ (+1)]]



=  max



1−
 (1− )

 [ [+1+1|] +  [ ( (+1 −))]]


= max



1−
 (1− )

 max


[ (+1+1|) +  [ ( (+1 −))]]
 

Therefore, the optimal consumption policy can be explicitly solved:

max



1−
 (1− )

 ⇒ ∗ = 1−  (32)

As a result,

 = (1− )
1−  max


[ (+1+1|) +  [ ( (+1 −))]]

  (33)

The partial equilibrium problem is therefore summarized by the above equation, which in-

volves solving the optimal investment-decision function,  (·), and the value function,  (·).
So, relative to the case of a non-unit EIS, one can avoid numerically solving the investor’s

consumption policy, as it is given by equation (32), but he needs to numerically solve the

investor’s indirect value function using equation (33).

The first-order conditions to the portfolio choice problem are

+ =
h
(


+1


+1)

i1−1
[


+1

−1
+1 (+1 −)] +  [ (+1 −)]

= 0, for ∗  0
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− =
h
(


+1


+1)

i1−1
[


+1

−1
+1 (+1 −)]−  [ ( −+1)]

= 0, for ∗  0

+ ≤ 0 and − ≥ 0, for ∗ = 0

In particular, for the EZ-investor,  = 0, and the above first-order conditions boil down

to

[

+1

−1
+1 (+1 −)] = 0

B. Numerical Algorithm

This appendix sketches the procedure used to numerically solve the model. I focus on the

non-unit EIS case ( 6= 0), and the solution procedure for the unit EIS case is slightly differ-
ent. The algorithm is developed based on Kubler and Schmedders (2003) and is summarized

as follows.

Step 0 : Define a finite grid on [0,1]. Choose two continuous functions, 0 (·) and 0 (·),
as initials for the investors’ consumption policy functions. These initials define the initial

for the price-dividend ratio function, 0 (·), through equation (22). Then on each grid point
, go through steps 1-4.

Step 1 : Given functions 
 (·) and 

 (·), suppose that the LA-investor allocates
nothing on the stock; that is, +1 () = 0. Then use both investors’ value functions,

equation (13), the EZ-investor’s first-order condition, equation (17), and the state transition

functions, equation (27), to solve five unknowns: ∗, 
∗
, , +1 , +1, where

+1 and +1 are the next-period wealth shares when +1 =  and , respectively.

Step 2 : Plug the solved ∗, , +1 and +1 into equations (14) and (15) to get

+ and −. If + ≤ 0 and − ≥ 0, then set +1
 () = ∗

and +1
 () = ∗. If +  0, then go to Step 3; otherwise, go to Step 4.

Step 3 : Use both investors’ value functions, equation (13), the EZ-investor’s first-order

equation, (17), the LA-investor’s first-order condition for a positive investment, equation

(14), and the state transition functions, equation (27), to solve six unknowns: ∗, 
∗
,

, +1 , +1, 
∗
. Set 

+1
 () = ∗ and +1

 () = ∗.

36



Step 4 : Use both investors’ value functions, equation (13), the EZ-investor’s first-order

equation, (17), the LA-investor’s first-order condition for a negative investment, equation

(15), and the state transition functions, equation (27), to solve six unknowns: ∗, 
∗
,

, +1 , +1, 
∗
. Set 

+1
 () = ∗ and +1

 () = ∗.

Step 5 : Check whether the following stop criterion is satisfied:

max


°°¡+1
 (·)  +1

 (·)  +1 (·)¢− (
 (·)  

 (·)   (·))
°°  

where  is an error tolerance. If yes, then the algorithm terminates, and the next step is to

set the consumption and investment policy functions and the risk-free rate function as those

solved in the last round. Otherwise, increase  by 1 and go to Step 1.

In the implementation of the algorithm, I divide [0 1] into 150 grid points and set the

tolerance level at 10−7. Kubler and Schmedders (2003) provide a method to assess the

accuracy of a candidate solution by computing the maximal relative error in Euler equations.

In my computations, the maximum errors lie below 10−6, suggesting that the algorithm

produces reasonably accurate solutions.
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Table 1 Technology Parameter Values

This table reports the technology parameter values used in the computation of equilibria.

The calibration takes one period to be one month. The consumption growth rate parameters

 and  are calibrated to match the historical mean (1.84%) and volatility (3.79%) of the

annual log consumption growth rate.

Parameters    

Values 05 05 10126 09906
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Table 2 Asset Prices and Consumption Policies in Representative Agent

Economies

This table reports the continuously compounded annualized equilibrium equity premi-

ums (  = 12 [ (log+1)− log ]), risk-free rates (

 = 12 log) and consumption

propensities ( = 12), assuming that investors are identical in preferences. Panels A, B

and C correspond to different values of EIS:  = 1 ( = 0),  = 08 ( = −025) and
 = 12 ( = 16). Parameter  controls the relative importance of loss aversion utility in

the investor’s preferences. For all combinations, the following three preference parameters

are fixed at constant:  = 0998,  = 225 and  = 1 (or  = 0). The technology parame-

ters are fixed at the values in Table 1.  () is the premium a representative agent with

wealth of $75,000 would pay to avoid a 50:50 bet to gain or lose $25,000 ($250).

  (%)  (%)  (%)  ($)  ($)

Panel A:  = 1

 = 0 0.07 4.17 2.40 4289 0.42

 = 00005 1.22 3.03 2.40 5076 21

 = 0001 2.65 1.59 2.40 5894 42

Panel B:  = 08

 = 0 0.07 4.63 2.86 4289 0.42

 = 00005 1.13 3.31 2.60 5021 19

 = 0001 3.01 0.95 2.13 6079 47

Panel C:  = 12

 = 0 0.07 3.86 2.09 4289 0.42

 = 00005 1.27 2.86 2.29 5111 22

 = 0001 2.53 1.82 2.50 5832 41
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Table 3 Survival of the LA-Investor:  = 1

This table reports the medians of the LA-investor’s wealth shares () at times  = 60,

120, and 600 months when the LA-investor has initial wealth shares of 0 = 05 and both

investors have a relative risk aversion coefficient of 1 (Panel A) or 3 (panel B). Both investors

have a unit EIS:  =  = 1. They have the same time patience parameter:

 =  = 0998. In the LA-investor’s preferences, paremeter  is set as 0001, and

the loss aversion coefficient  can take four possible values:  = 105, 15, 225 and 3. The

technology parameters are fixed at the values in Table 1. The medians are estimated from

5000 simulated sample paths at time .

Panel A:  =  = 1 ( =  = 0)

 = 105  = 15  = 225  = 3

 = 60 0.4897 0.4897 0.4897 0.4897

 = 120 0.4853 0.4853 0.4853 0.4853

 = 600 0.4547 0.4534 0.4534 0.4534

Panel B:  =  = 3 ( =  = −2)
 = 105  = 15  = 225  = 3

 = 60 0.5026 0.4810 0.4782 0.4782

 = 120 0.5039 0.4667 0.4633 0.4633

 = 600 0.5110 0.3702 0.3641 0.3641
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Table 4 Risk Attitude and Survival

This table illustrates the relationship between the risk attitude and the survival prospects

of the LA-investor. The variables , log and  are monthly equity premiums (in

basis points) in the representative agent economies populated with the LA-investor, the

log investor, and the EZ-investor, respectively. The technology parameters are fixed at

the values in Table 1. The other preference parameters are set at the following values:

 =  = 1,  =  = 0998 and  =  = 3. “Y” and “N” represent

“Yes” and “No” respectively.

 = 105  = 15  = 225  = 3

 (bps) 3.42 21.96 23.82 43.97

  log (=1.20bps) Y Y Y Y

   (=3.60bps) Y N N N

Is LA closer to log? Y N N N

Does LA survive? Y N N N

45



Table 5 Price Impact of the LA-Investor: EIS = 1

This table reports the medians of the LA-investor’s impact on asset prices at times

 = 60, 120, and 600 months when the LA-investor has initial wealth shares of 0 = 01,

05, 09 and 1, and both investors have a relative risk aversion coefficient of 1 (Panel A) or 3

(panel B). The price impact is measured by  , the ratio of the conditional monthly

equity premium in the heterogeneous agent economy to the monthly equity premium in the

economy with only the EZ-investor. Both investors have a unit EIS:  =  = 1.

They have the same time patience parameter:  =  = 0998. In the LA-investor’s

preferences, paremeter  is set as 0001, and the loss aversion coefficient  is set as 225.

The technology parameters are fixed at the values in Table 1. The medians are estimated

from 5000 simulated sample paths at time .

Panel A:  =  = 1 ( =  = 0)

0 = 01 0 = 05 0 = 09 0 = 1

 = 0 1.1111 1.9995 9.8945 18.92

 = 60 1.1092 1.9592 6.7691 18.92

 = 120 1.1087 1.9424 5.5034 18.92

 = 600 1.1071 1.8290 2.9761 18.92

Panel B:  =  = 3 ( =  = −2)
0 = 01 0 = 05 0 = 09 0 = 1

 = 0 1.1093 1.8420 4.8418 6.6105

 = 60 1.1057 1.7830 4.1068 6.6105

 = 120 1.1034 1.7446 3.3067 6.6105

 = 600 1.0889 1.5204 1.9381 6.6105
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Table 6 Survival and Price Impact of the LA-Investor: EIS = 0.8

This table reports the medians of the LA-investor’s wealth shares () and price impacts

() at times  = 60, 120, and 600 months when the LA-investor has initial wealth

shares of 0 = 01, 05, 09 and 1. Both investors have a common EIS:  =  =

08. They have the same time patience parameter and relative risk aversion parameters:

 =  = 0998 and  =  = 1 ( =  = 0). In the LA-investor’s

preferences, paremeter  is set as 0001, and the loss aversion coefficient  is set as 225.

The technology parameters are fixed at the values in Table 1. The medians are estimated

from 5000 simulated sample paths at time .

Panel A: Medians of 

0 = 01 0 = 05 0 = 09 0 = 1

 = 60 0.098569 0.49052 0.86617 1

 = 120 0.098226 0.48681 0.84156 1

 = 600 0.097516 0.46088 0.70335 1

Panel B: Medians of 

0 = 01 0 = 05 0 = 09 0 = 1

 = 0 1.1095 1.9660 6.9390 21.44

 = 60 1.1078 1.9308 5.8200 21.44

 = 120 1.1073 1.9172 5.1952 21.44

 = 600 1.1073 1.8283 3.1693 21.44

47



48 
 

Figure 1 
 Survival and Price Impact of the LA-Investor: EIS=1 

 
Figure 1 graphs the probability density functions (p.d.f.s) of the LA-investor's wealth shares (ωt) 
in Panels (a1)-(a3) and his price impacts impact (EPt/EPEZ) in Panels (b1)-(b3) at t=60,120,600 
months when both investors have a unit EIS, that is, when EISEZ=EIZLA=1. The p.d.f.s are 
estimated non-parametrically from 5000 simulated data. At time 0, the wealth share controlled 
by the LA-investor controls is ω₀=0.1, 0.5 or 0.9. The other preference parameters are 
RAEZ=RALA=1, βEZ=βLA=0.998, λ=2.25 and bLA=0.001. The technology parameters are fixed at 
the values in Table 1. 
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Figure 2 
 Price Impact and Stock Market Participation  

 
Figure 2 graphs the price impact (EPt/EPEZ) in Panel (a) and the stock investment policy (SLA,t) of 
the LA-investor in Panel (b). The preference parameters are EISEZ =EISLA =1, RAEZ =RALA =1,  
βEZ =βLA=0.998, λ=2.25 and bLA=0.001. The technology parameters are fixed at the values in 
Table 1.   
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Figure 3 
 Survival of the LA-Investor: EIS=1.2 

 
Figure 3 graphs the probability density functions (p.d.f.s) of the LA-investor's wealth shares (ωt) 
in Panels (a1)-(a3) and his price impacts impact (EPt/EPEZ) in Panels (b1)-(b3) at t=60,120,600 
months when both investors have an EIS of 1.2, that is, when EISEZ=EIZLA=1.2. The p.d.f.s are 
estimated non-parametrically from 5000 simulated data. At time 0, the wealth share controlled 
by the LA-investor controls is ω₀=0.1, 0.5 or 0.9. The other preference parameters are 
RAEZ=RALA=1, βEZ=βLA=0.998, λ=2.25 and bLA=0.001. The technology parameters are fixed at 
the values in Table 1. 
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Figure 4 
 Consumption Policy and Risk-Free Rate: EIS =0.8 

 
Figure 4 depicts the consumption policies of both investors in Panel (a) and the equilibrium risk-
free rate function in Panel (b) when EISEZ =EISLA=0.8. The other preference parameters are 
RAEZ=RALA=1, βEZ=βLA=0.998, λ=2.25 and bLA=0.001. The technology parameters are fixed at 
the values in Table 1.  
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Figure 5 
 Survival and Consumption Policies: EISEZ  < EISLA   

 
Figure 5 depicts the probability density functions (p.d.f.s) of the LA-investor's wealth shares (ωt) 
at t=60,120,600 months in Panel (a), as well as the consumption policies of both investors in 
Panel (b) when EISEZ =0.5 and EISLA =0.8.  The other preference parameters are RAEZ=RALA=1, 
βEZ=βLA=0.998, λ=2.25 and bLA=0.001.  The technology parameters are fixed at the values in 
Table 1. The p.d.f.s are estimated non-parametrically from 5000 simulated data. At time 0, each 
investor has half of the aggregate wealth; that is, ω0=0.5. 
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Figure 6 
 Survival and Consumption Policies: βEZ  < βLA  

 
Figure 6 depicts the probability density functions (p.d.f.s) of the LA-investor's wealth shares (ωt) 
at t=60,120,600 months in Panel (a), as well as the consumption policies of both investors in 
Panel (b) when βEZ  =0.996 and βLA = 0.998. The other preference parameters are EISEZ =EISLA 
=1.2, RAEZ=RALA=1, λ=2.25 and bLA=0.001. The technology parameters are fixed at the values 
in Table 1. The p.d.f.s are estimated non-parametrically from 5000 simulated data. At time 0, 
each investor has half of the aggregate wealth; that is, ω0=0.5. 
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